Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon

نویسندگان

  • P. Seifert
  • A. Ansmann
  • D. Müller
  • U. Wandinger
  • D. Althausen
  • A. J. Heymsfield
  • S. T. Massie
  • C. Schmitt
چکیده

[1] Cirrus formation and geometrical and optical properties of tropical cirrus as a function of height and temperature are studied on the basis of INDOEX (Indian Ocean Experiment) lidar and radiosonde measurements and satellite observations of deep convection causing the generation of anvil cirrus. Lidar and radiosonde measurements were conducted at Hulule (4.1 N, 73.3 E), Maldives, during four field campaigns carried out in February– March 1999 and March 2000 (northeast (NE) monsoon season, characterized by increased concentrations of anthropogenic aerosols over the Indian Ocean) and in July and October 1999 (southwest (SW) monsoon season, characterized by clean maritime conditions). As a result of a stronger impact of deep convection on cirrus formation during the SW monsoon season, cirrus clouds covered the sky over the lidar site in only 35% (NE), but 64% (SW) of the measurement time. Subvisible cirrus (optical depth 0.03), thin (optical depth from 0.03 to 0.3), and opaque cirrus (optical depth 0.3) were observed in 18%, 48%, and 34% (NE) and in 8%, 52%, and 40% (SW) out of all cirrus cases, respectively. Mean midcloud heights were rather similar with values of 12.9 ± 1.5 km (NE) and 12.7 ± 1.3 km (SW). In 25% of the cases the cirrus top height was found close to the tropopause. Mean values of the multiple-scattering-corrected cirrus optical depth, cirrus layer mean extinction coefficient, and extinction-to-backscatter ratio were 0.25 ± 0.26 (NE) and 0.34 ± 0.29 (SW), 0.12 ± 0.09 km 1 (NE) and 0.12 ± 0.10 km 1 (SW), and 33 ± 9 sr (NE) and 29 ± 11 sr (SW), respectively. A functional dependency of the extinction coefficient of the tropical cirrus on temperature is presented. All findings are compared with several other cirrus lidar observations in the tropics, subtropics, and at midlatitudes. By contrasting the cirrus optical properties of the different seasons, a potential impact of anthropogenic particles on anvil cirrus optical properties was examined. Differences in the cirrus extinction-to-backscatter ratio suggest that NE monsoon anvil cirrus originating from deep-convection cumulus clouds had more irregularly shaped and thus slightly larger ice crystals than respective SW monsoon anvil cirrus. Because the meteorological conditions were found to vary significantly between the seasons, an unambiguous identification of the influence of Asian haze on cirrus optical properties is not possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol and pollutant transport and their impact on radiative forcing over the tropical Indian Ocean during the January–February 1996 pre-INDOEX cruise

Measurements of aerosol bulk composition, optical depth, size distribution and the incoming solar radiation flux were carried out over the coastal waters of India, the Arabian sea and the tropical Indian Ocean during a cruise conducted in January 1996. Aerosol concentrations were relatively high throughout much of the cruise, even when the ship was at considerable distances from land. In this p...

متن کامل

Aerosol Optical Depth Spatial and Temporal Variability Using Satellite Data Over Indian Major Cities

Introduction: The study’s main aim is to investigate the long-term variation of Aerosol Optical Depth (AOD). It also aims to show the relationship between meteorological parameters. This study evaluates long-term (2010 to 2021) special and temporal changes over major Indian regions using satellite-based data from NASA’s Terra Satellite. Materials and Methods: This study was carried out during ...

متن کامل

Association of Tropical Cirrus in the 10–15-km Layer with Deep Convective Sources: An Observational Study Combining Millimeter Radar Data and Satellite-Derived Trajectories

In this paper, millimeter cloud radar (MMCR) and Geosynchronous Meteorological Satellite (GMS) data are combined to study the properties of tropical cirrus that are common in the 10–15-km layer of the tropical troposphere in the western Pacific. Millimeter cloud radar observations collected by the Atmospheric Radiation Measurement program on the islands of Manus and Nauru in the western and cen...

متن کامل

Southwest Indian Ocean SST Variability: Its Local Effect and Remote Influence on Asian Monsoons*

An atmospheric general circulation model (AGCM) is used to examine the role of Indian Ocean sea surface temperature (SST) anomalies in regional climate variability. In particular, the authors focus on the effect of the basinwide warming that occurs during December through May after the mature phase of El Niño. To elucidate the relative importance of local and remote forcing, model solutions wer...

متن کامل

A modeling study of the direct effect of aerosols over the tropical Indian Ocean

The microphysical, chemical, optical, and lidar data collected during the Indian Ocean Experiment (INDOEX) resulted in a self-consistent aerosol formulation for a multiple-scattering Monte Carlo radiation model. The model was used to simulate the direct aerosol radiative forcing, cloud radiative forcing, and heating rates for typical winter monsoon conditions over the tropical Indian Ocean. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007